Climate-neutral hydrogen is a promising option to replace fossil fuels and reduce greenhouse gas emissions in energy-intensive industries. At the same time, spatial and timely dynamics of hydrogen market diffusion are uncertain. This study simulates the market diffusion of hydrogen-based production routes for the entire European plant stock of primary steel, high-value chemicals, methanol, and ammonia production sites. The model includes a total of 158 plants at 96 sites and explicitly considers hydrogen infrastructure, plant ages, production capacities and reinvestment cycles. Sixteen scenario sensitivities were defined to analyse various future hydrogen and carbon dioxide price pathways. The results show that one investment opportunity remains until 2050 for all plants, while 36% of plants require reinvestment before 2030. The cost-competitiveness of hydrogen-based production varies across products: Methanol and high-value chemicals can only be competitive with hydrogen prices below 60 €/MWh. For steel, a high carbon dioxide price and natural gas-fired direct reduction can mitigate fossil lock-ins using natural gas as bridging option towards full use of hydrogen. The study highlights the risk of reinvesting in fossil technologies without additional policies. The maximum technical hydrogen demand potential is 1000 TWh, but considering techno-economic limitations in the sensitivities, only 64 to 507 TWh can be reached. The planned future hydrogen network matches most reinvestment needs.
This opinion piece discusses six ways, in which the capacity to evaluate progress in SDGs vis-à-vis efforts to mitigate climate change using IAMs is currently being enhanced to offer robust and actionable policy prescriptions that may place climate policy in a holistic sustainable development context.
The reduction of the EU's pipeline gas imports from Russia because of the Russian war against Ukraine has had severe economy-wide implications for the bloc. Using a multisector integrated assessment model (GCAM), we find that a potential complete cut-off of Russian pipeline gas exports to the EU unevenly impacts the energy mix and gas prices across subregions within the EU, depending on their access to alternative gas pipelines and liquefied natural gas infrastructure. The restrictions also affect global gas infrastructure capacity additions, asset stranding, and trade dynamics. Our results show that the Fit-for-55 policy framework already improves the EU's resilience against a cut-off of Russian pipeline gas, while additional improvements in energy efficiency and renewable targets could further soften impacts.
A prospective life cycle assessment was performed for global ammonia production across 26 regions from 2020 to 2050. The analysis was based on the IEA Ammonia Roadmap and IMAGE electricity scenarios model for three climate scenarios related to a mean surface temperature increase of 3.5 °C, 2.0 °C, and 1.5 °C by 2100. Combining these models with a global perspective and new life cycle inventories improves ammonia's robustness, quality, and applicability in prospective life cycle assessments. It reveals that complete decarbonisation of the ammonia industry by 2050 is unlikely from a life cycle perspective because of residual emissions in the supply chain, even in the most ambitious scenario. However, strong policies in the 1.5 °C scenario could significantly reduce climate impacts by up to 70% per kilogram of ammonia. The cumulative greenhouse gas emissions from the ammonia supply chain between 2020 and 2050 are estimated at 24, 21, and 15 gigatonnes CO2-equivalent for the 3.5 °C, 2.0 °C, and 1.5 °C scenarios, respectively. The paper examines challenges in achieving these scenarios, noting that electrolysis-based (yellow) ammonia, contingent on electricity decarbonisation, offers a cleaner production pathway. However, achieving significant GHG reductions is complex, requiring advancements in technologies with lower readiness, like carbon capture and storage and methane pyrolysis. The study also discusses limitations such as the need to reduce urea demand, potential growth in ammonia as a fuel, reliance on CO2 transport and storage, expansion of renewable energy, raw material scarcity, and the longevity of existing plants. It highlights potential shifts in environmental impacts, such as increased land, metal, and mineral use in scenarios with growing renewable electricity and bioenergy with carbon capture and storage.